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Abstract—The Mars Science Laboratory (MSL) Curiosity rover
experienced increasing wheel damage beginning in October
2013. While the wheels were designed to operate with consid-
erable damage, the rate at which damage was occurring was
unexpected and raised concerns regarding wheel lifetime. The
Jet Propulsion Laboratory (JPL) has now developed and de-
ployed new software on Curiosity that reduces the forces acting
on the wheels. Our new Traction Control algorithm adapts each
wheel’s speed to fit the terrain it drives over. It does not rely on
any a priori knowledge of the terrain, and instead leverages the
rover’s measured attitude rates and suspension angles, together
with a rigid-body kinematics model, to estimate the real-time
wheel-terrain contact angles and ideal, no-slip wheel angular
rates. In addition, free-floating “wheelies” are detected and au-
tonomously corrected. In this paper, we describe the algorithm,
its ground testing campaign and associated challenges, and
finally its validation and performance in flight. Ground test data
demonstrates reductions in the forces acting on the wheels and
validates the wheelie-damping capability. Secondary benefits in
some terrains include a reduction in heading deviations while
climbing rocks, with a reduction in slip in certain sandy terrains.
Preliminary validation from flight data confirms these findings.
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1. INTRODUCTION
In October 2013, images taken with the Mars Hand Lens
Imager (MAHLI) of the Mars Science Laboratory (MSL)
Curiosity Rover revealed that damage on the rover’s wheels
had progressed at an unexpectedly high rate. While wheel
damage was expected over the course of the rover’s mission,
the wheel punctures seen in the images were unlike the stress
concentration cracking seen after extensive high-load driving
in ground testing. After a detailed investigation into the
causes of wheel damage [ADG+17], the MSL project began
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efforts to reduce further wheel damage by altering the way
the vehicle drives over obstacles. The result of these efforts
is the Traction Control (TRCTL) algorithm described in this
paper.

Figure 1. This MAHLI image, taken on Sol 490, depicts
puncture damage on the left front wheel.

Prior to the development of this new algorithm, the
NASA/JPL Mars rovers moved along a commanded arc by
turning each wheel at a constant speed, based on an Acker-
mann steering model, which assumes the terrain is flat. How-
ever, the terrain on Mars is never flat, and ideally, the speed
of each wheel should vary based on the local topography of
the terrain it is traversing.

To illustrate with a simple example, imagine flat terrain with
a single rock ahead of the front left wheel of the rover. As
the rover advances, that front wheel needs to climb over the
rock, while the other wheels continue to drive on flat ground.
In order to climb over the rock, the front wheel must traverse
a longer distance than the other five wheels, during the same
time period. This means the front wheel should go faster than
the other five wheels. Or conversely, since the speed of the
wheels is capped, the other five wheels should slow down.
Commanding all six wheels to rotate at the same speed results
in slip, as the five wheels effectively push the front left wheel
forward. This can create damage on the leading wheels if the
rock is embedded and sharp, with a tip that can fit between
the wheel treads and puncture the wheel skin. As seen in
rover images and in ground testing, these punctures initiate
the damage for a given skin section and over time, grow to
merge with the stress concentration cracking at the tips of the
grouser chevrons.
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Modulating the speed of each wheel to match the terrain
topography is a very challenging problem when that topog-
raphy is unknown. While the Mars rovers can image their
surrounding terrain and generate a height map [GMM02],
[MJC+06], this capability is typically reserved for use in
unknown terrain since it a resource-intensive process that
significantly reduces overall traverse speed. Moreover, the
noise in the height map and accumulated uncertainty in the
rover’s position and orientation would make it impractical to
rely on the terrain mesh to optimize wheel speeds. Instead,
we have chosen to develop an approach that only relies on the
rover’s measured attitude rates and suspension angles (from
the rover’s gyros and rocker/bogies encoders), and leverages
the rigid-body kinematic model of the rover to calculate the
optimal wheel speeds as the rover drives.

To implement the algorithm in flight, the team conducted
extensive ground testing on both the mobility test vehicle,
Scarecrow, and the Vehicle System Testbed (VSTB). Terrains
used in this testing were carefully engineered to provide a
variety of stressing cases. One of the unexpected behaviors
discovered during testing was a “wheelie” observed on the
middle wheel of the test vehicle in high-friction terrain.
Due to tension in the suspension system, the middle wheel
lifted off the terrain and continued to lift. The wheelie was
repeatable in a wheel configuration where the front wheel,
while descending a rock, began to push against an embedded
rock at the same time that the middle wheel crested a rock
and the rear wheel was on flat terrain. From this observation,
a wheelie suppression behavior was included in the Traction
Control algorithm.

The algorithm itself was integrated into the rover’s flight
software as a hot patch, to be loaded upon each boot. Updates
to tactical resource modeling and simulation to account for
the increased duration and data volume of the drives were
necessary prior to uplink and checkout of the patch on board
Curiosity. Similarly, downlink assessment tools had to be
updated to view the new data added to the motion history
logs. After a three-stage checkout to ensure vehicle safety,
the flight performance of the vehicle was closely monitored.
Trending results and preliminary flight data confirm the
ground performance of the algorithm.

This paper first describes the Traction Control algorithm, then
discusses the details of its implementation, including the in-
tegration into mission operations, test results, and assessment
tools. It concludes with the results of flight performance and
plans for long-term trending.

2. ALGORITHM
Our approach consists in using rigid-body kinematics to
relate the velocities of each moving part of the rover. The
centers of the two front wheels rotate in opposite directions
relative to the main body of the rover around the rocker joint.
The centers of the middle and rear wheels rotate relative to
the rocker body around the left and right bogie joints. Those
rotation angles and rates are measured by encoders and enable
us to express the wheel velcities as a function of the geometry
of the rover, and the measured attitude and suspension rates,
and contact angles between the wheels and the terrain.

We first introduce the mathematical framework, including the
symbols, coordinate frames, and kinematic formulas. We
then describe how we estimate the wheels’ contact angles,
and conclude with the calculation of the ideal wheel speeds.

Figure 2. Rover model on flat ground, viewed from the left
side.

Figure 3. Rover model on flat ground, viewed from above.

Rigid-Body Rover Model

A description of all the symbols used in this section can be
found in Appendix 1.

We simplify the rover geometry to avoid unnecessary param-
eters by placing the rocker D and bogies B1 and B2 in the
x-z plane of the rover’s body frame (no lateral offset from the
rover’s origin O), as illustrated by Figures 2 and 3. The rover
origin O is between the middle wheels on the surface, when
on flat ground.

Frames

We define the following frames and rotation matrices:

• Body frame bd: follows the aerospace convention, with the
x axis along the rover’s body length, pointing forward, the y
axis pointing to the right of the x axis, and the z axis pointing
down.
• Rocker frames rk1 and rk2: body frame rotated by the
rocker angle (+β for rk1 and −β for rk2). We define the
following rotation matrices (from body to rocker frames):

rk1Rbd =

[
cos(β) 0 sin(β)

0 1 0
− sin(β) 0 cos(β)

]
(1)
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rk2Rbd =

[
cos(β) 0 − sin(β)

0 1 0
sin(β) 0 cos(β)

]
(2)

• Bogie frames bg1 and bg2: rocker frames rotated by the
bogie angles (ρ1 for bg1 and ρ2 for bg2). We define the
following rotation matrices (from rocker to bogie frames):

bg1Rrk1 =

[
cos(ρ1) 0 sin(ρ1)

0 1 0
− sin(ρ1) 0 cos(ρ1)

]
(3)

bg2Rrk2 =

[
cos(ρ2) 0 sin(ρ2)

0 1 0
− sin(ρ2) 0 cos(ρ2)

]
(4)

• Wheel frames wi, i ∈ [1, 6]: rocker frames (for front
wheels) or bogie frames (for middle / rear wheels) rotated
by the wheel’s steering angle ψi. We define the following
rotation matrices (from rocker/bogie to wheel frames):

wiRrki =

[
cos(ψi) − sin(ψi) 0
sin(ψi) cos(ψi) 0

0 0 1

]
for all i ∈ {1, 2} (5)

wiRbg1 =

[
cos(ψi) − sin(ψi) 0
sin(ψi) cos(ψi) 0

0 0 1

]
for all i ∈ {3, 5} (6)

wiRbg2 =

[
cos(ψi) − sin(ψi) 0
sin(ψi) cos(ψi) 0

0 0 1

]
for all i ∈ {4, 6} (7)

• Contact Angle frames ηi, i ∈ [1, 6]: wheel frames rotated
by the wheel’s contact angle ηi. We define the following
rotation matrices (from wheel to contact angle frames):

ηiRwi
=

[
cos(ηi) 0 sin(ηi)

0 1 0
− sin(ηi) 0 cos(ηi)

]
for all i ∈ [1, 6] (8)

Contact Angle Definition

We define the contact angle η between a wheel and the ground
as the angle between the steering actuator axis and the contact
point of the wheel and the ground, as illustrated on Figure 4.
Note that when the rover is on flat ground, the contact angle
for each wheel is zero. If the front wheel climbs over
a rock while the other wheels remain on flat ground, the
contact angle would become positive as the wheel climbs and
negative as the wheel descends.
In reality the wheels of the rover do not make contact with the
ground at a single point. This is fine however, as we can still
model the motion of the wheel as if there was a single contact
point, whose location on the wheel is defined such that the
vector from the center of the wheel to the contact point ( ~AC
in Figure 4) is orthogonal to the velocity vector of the wheel
(~v in 4).

Kinematic Equations

With the parameters of our rover model defined, we can relate
the velocities of the wheels to the velocity of any point on the
rover using rigid-body kinematics.
The linear velocities of any two points A and B, attached
to the same rigid body R, relative to some frame I, and
expressed in some arbitrary frame F , are related according
to the following key equation:

F~vA/I = F~vB/I +
F~ωR/I × F ~BA (9)

Figure 4. Definition of the contact angle η. ~v is the wheel
velocity, ~xw and ~zw are the x and z axis of the wheel frame.

Where F~ωR/I is the angular velocity vector of the rigid body
relative to the frame I, expressed in frame F .

For our purposes, all velocities will be relative to the inertial
frame and the angular velocity vector will always be the one
of the rover’s body relative to the inertial frame, so we’ll
simplify the notations as follows:

F~vA = F~vB + F~ω × F ~BA (10)

This kinematic relationship can be used to relate the velocities
of any two points on the articulated rover body. In order to
illustrate our approach, described in details in the following
subsections, we show how we can express the velocity of the
left front wheel (wheel 1) as a function of the velocity of the
rover’s origin:

bd~vO =

[
ẋ
ẏ
ż

]

bd~vD = bd~vO +

[
ωx
ωy
ωz

]
× bd ~OD =

[
ẋ
ẏ
ż

]
+

[
ωx
ωy
ωz

]
× bd ~OD

bd~vA1 = bd~vD +

[
ωx

ωy + β̇
ωz

]
× bd ~DA1

=

[
ẋ
ẏ
ż

]
+

[
ωx
ωy
ωz

]
× bd ~OD +

[
ωx

ωy + β̇
ωz

]
× bd ~DA1

However, since we want to calculate the ideal (no slip) wheel
rates, we need express the wheel velocity in the contact angle
frame, since we know that the x component, η1vxA1

, will be
proportional to the wheel rate θ̇1:

η1vxA1
= Rw ω

y
1

With ωy1 the angular rate of the wheel. However, ωy1 is not
exactly the same as the angular rate delivered by the drive
motor θ̇1 (what we want to solve for), since that angular rate
is relative to the drive actuator, which itself rotates relative
to the inertial frame due to the rover’s body and suspension
rates:
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ωy1 = θ̇1 + ζy1

with ~ζ1 = η1Rw1

w1Rrk1
rk1Rbd

[
ωx

ωy + β̇
ωz

]

To express the wheel velocity in the contact angle frame, we
can use the rotation matrices defined earlier:

η1~vA1
=η1Rw1

w1Rrk1
rk1Rbd

bd~vA1

=

[
cos(η1) 0 − sin(η1)

0 1 0
sin(η1) 0 cos(η1)

][
cos(ψ1) sin(ψ1) 0
− sin(ψ1) cos(ψ1) 0

0 0 1

]
[
cos(β) 0 − sin(β)

0 1 0
sin(β) 0 cos(β)

]
([

ẋ
ẏ
ż

]
+

[
ωx
ωy
ωz

]
× bd ~OD +

[
ωx

ωy + β̇
ωz

]
× bd ~DA1

)

Those equations show that the wheel rate is a function of
the attitude and suspension rates, suspension angles, steering
angles (all of which are measured), and the wheel’s contact
angle and rover’s linear velocity (not measured).

Algorithm Overview

The functional diagram depicting our technical approach is
shown in Figure 5.

Figure 5. Functional diagram of the Traction Control
algorithm.

Calculation of the Contact Angle Estimates

There are several ways to estimate the contact angles [ID04].
We chose to trade off some accuracy in favor of robustness
by choosing an approach that does not depend on the com-
manded nor measured wheel velocities. This way, the output
of the algorithm, namely the wheel rate commands, do not
affect the input of the algorithm at the next time step, thus
avoiding any feedback loops that might have caused errors
and jeopardized the stability of the algorithm.

A simplifying assumption was made: we approximated the
rover’s linear velocity to its value on flat ground when calcu-
lating the contact angle estimates.

Estimating the Rover’s Linear Velocity— The flat ground
approximation of the rover’s linear velocity in the body frame
is:

bd~vO =

[
ẋ
ẏ
ż

]
=

[
ẋ0
0
0

]
(11)

• For straight driving, all points on the rover have the same
speed, which is capped by the maximum wheel rate θ̇max:

ẋ0 = dir Rw θ̇max (12)

Where dir is the drive direction (+1 for forward, -1 for
backward), and Rw is the wheel radius.
• For turns, we are also limited by the maximum wheel
rate θ̇max, but ẋ0 also depends on the turn radius of the
commanded arc, r:

ẋ0 = dir Rw θ̇max
|r|

max(rf , rm, rr)
(13)

Where rf , rm, and rr are the turn radius of the front, middle,
and rear wheels, respectively, located to the outside of the
turn (away from the center of rotation – those are the wheels
with the largest turn radius and therefore going the fastest).
Note that rf , rm, and rr are greater than r since the distance
from the center of rotation to the rover’s origin is always
shorter than the distance to the outside wheels, and hence,
the velocity of the rover’s origin is decreased during turns
compared to straight driving. These turn radii of the wheels
can be computed as follows:

rf =
√
x2fm + (yof + |r|)2 (14)

rm = yom + |r| (15)

rr =
√
x2mr + (yor + |r|)2 (16)

Estimating the Contact Angles—The contact angle for each
wheel is computed by carrying out the following steps:

• Calculate the wheel’s linear velocity vector expressed in
the wheel’s frame.
• Compute the contact angle as the angle between the x and
z components of that vector.

We can compute the wheels’ linear velocities using the
kinematics Equation 10 and our approximation of the linear
velocity of the rover’s origin (Equation 11). First we compute
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the linear velocities of the wheels in the body frame:

bdvD =

[
ẋ0
0
0

]
+

[
ωx
ωy
ωz

]
× bd ~OD (17)

bdvA1
= bdvD −

[
ωx

ωy + β̇
ωz

]
× bd ~A1D (18)

bdvA2
= bdvD −

[
ωx

ωy − β̇
ωz

]
× bd ~A2D (19)

bdvB1
= bdvD −

[
ωx

ωy + β̇
ωz

]
× bd ~B1D (20)

bdvB2
= bdvD −

[
ωx

ωy − β̇
ωz

]
× bd ~B2D (21)

bdvA3 = bdvB1 −

[
ωx

ωy + β̇ + ρ̇1
ωz

]
× bd ~A3B1 (22)

bdvA4 = bdvB2 −

[
ωx

ωy − β̇ + ρ̇2
ωz

]
× bd ~A4B2 (23)

bdvA5 = bdvB1 −

[
ωx

ωy + β̇ + ρ̇1
ωz

]
× bd ~A5B1 (24)

bdvA6
= bdvB2

−

[
ωx

ωy − β̇ + ρ̇2
ωz

]
× bd ~A6B2 (25)

With the following parameters based on the rover geometry
shown in Figures 2 and 3:

bd ~OD =

[
xod
0
zod

]
(26)

bd ~A1D = bdRrk1

[−lfd cos(κ1)
yof

−lfd sin(κ1)

]
(27)

bd ~A2D = bdRrk2

[−lfd cos(κ1)
−yof

−lfd sin(κ1)

]
(28)

bd ~B1D = bdRrk1

[
ldb cos(κ2)

0
−ldb sin(κ2)

]
(29)

bd ~B2D = bdRrk2

[
ldb cos(κ2)

0
−ldb sin(κ2)

]
(30)

bd ~A3B1 = bdRrk1
rk1Rbg1

[−lbm cos(κ3)
yom

−lbm sin(κ3)

]
(31)

bd ~A4B2 = bdRrk2
rk2Rbg2

[−lbm cos(κ3)
−yom

−lbm sin(κ3)

]
(32)

bd ~A5B1 = bdRrk1
rk1Rbg1

[
lbr cos(κ4)

yor
−lbr sin(κ4)

]
(33)

bd ~A6B2 = bdRrk2
rk2Rbg2

[
lbr cos(κ4)
−yor

−lbr sin(κ4)

]
(34)

Now we can compute the wheels’ linear velocities in the
wheels’ frames:

w1vA1
= w1Rrk1

rk1Rbd
bdvA1

(35)
w2vA2 = w2Rrk2

rk2Rbd
bdvA2 (36)

w3vA3
= w3Rbg1

bg1Rrk1
rk1Rbd

bdvA3
(37)

w4vA4
= w4Rbg2

bg2Rrk2
rk2Rbd

bdvA4
(38)

w5vA5 = w5Rbg1
bg1Rrk1

rk1Rbd
bdvA5 (39)

w6vA6
= w6Rbg2

bg2Rrk2
rk2Rbd

bdvA6
(40)

Finally, we can compute the contact angles as follows:

∀i ∈ [1, 6], ηi = − arctan(
wivzAi

wivxAi

) (41)

Calculation of the Wheel Rate Commands

As described in the Kinematics Equations subsection, it is
possible to relate the wheel angular rates to the linear velocity
of the rover origin, contact angles, attitude rates, and suspen-
sion angles and rates. Let us derive those equations for all six
wheels.

First we can set the y component of the rover’s linear velocity
to zero since we do not want the rover to move sideways:

ẏ = 0 (42)

This results in:

bd~vO =

[
ẋ
0
ż

]
(43)

Then we compute the wheel linear velocities in the body
frame, by applying our kinematics formula (Equation 10)
down the chain of linked rigid bodies, starting from the
rover’s body (at origin O), and moving down to the wheels,
passing through the rocker and bogies points:
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bdvD =

[
ẋ
0
ż

]
+

[
ωx
ωy
ωz

]
× bd ~OD (44)

bdvA1
= bdvD −

[
ωx

ωy + β̇
ωz

]
× bd ~A1D (45)

bdvA2
= bdvD −

[
ωx

ωy − β̇
ωz

]
× bd ~A2D (46)

bdvB1
= bdvD −

[
ωx

ωy + β̇
ωz

]
× bd ~B1D (47)

bdvB2 = bdvD −

[
ωx

ωy − β̇
ωz

]
× bd ~B2D (48)

bdvA3 = bdvB1 −

[
ωx

ωy + β̇ + ρ̇1
ωz

]
× bd ~A3B1 (49)

bdvA4 = bdvB2 −

[
ωx

ωy − β̇ + ρ̇2
ωz

]
× bd ~A4B2 (50)

bdvA5
= bdvB1

−

[
ωx

ωy + β̇ + ρ̇1
ωz

]
× bd ~A5B1 (51)

bdvA6
= bdvB2

−

[
ωx

ωy − β̇ + ρ̇2
ωz

]
× bd ~A6B2 (52)

Using the rotation matrices define in the Frames subsection,
we express the body-frame linear velocities of the wheels in
the contact angle frames:

η1vA1
= η1Rw1

w1Rrk1
rk1Rbd

bdvA1
(53)

η2vA2
= η2Rw2

w2Rrk2
rk2Rbd

bdvA2
(54)

η3vA3 = η3Rw3

w3Rbg1
bg1Rrk1

rk1Rbd
bdvA3 (55)

η4vA4
= η4Rw4

w4Rbg2
bg2Rrk2

rk2Rbd
bdvA4

(56)
η5vA5

= η5Rw5

w5Rbg1
bg1Rrk1

rk1Rbd
bdvA5

(57)
η6vA6 = η6Rw6

w6Rbg2
bg2Rrk2

rk2Rbd
bdvA6 (58)

We can then relate the wheel rate commands to the x com-
ponent of the wheels’ linear velocities in the contact angle
frames:

η1vxA1
= Rw

(
θ̇1 + ζy1

)
(59)

η2vxA2
= Rw

(
θ̇2 + ζy2

)
(60)

η3vxA3
= Rw

(
θ̇3 + ζy3

)
(61)

η4vxA4
= Rw

(
θ̇4 + ζy4

)
(62)

η5vxA5
= Rw

(
θ̇5 + ζy5

)
(63)

η6vxA6
= Rw

(
θ̇6 + ζy6

)
(64)

~ζ1 = η1Rw1

w1Rrk1
rk1Rbd

[
ωx

ωy + β̇
ωz

]
(65)

~ζ2 = η2Rw2

w2Rrk2
rk1Rbd

[
ωx

ωy − β̇
ωz

]
(66)

~ζ3 = η3Rw3

w3Rbg1
bg1Rrk1

rk1Rbd

[
ωx

ωy + β̇ + ρ̇1
ωz

]
(67)

~ζ4 = η4Rw4

w4Rbg2
bg2Rrk2

rk2Rbd

[
ωx

ωy − β̇ + ρ̇2
ωz

]
(68)

~ζ5 = η5Rw5

w5Rbg1
bg1Rrk1

rk1Rbd

[
ωx

ωy + β̇ + ρ̇1
ωz

]
(69)

~ζ6 = η6Rw6

w6Rbg2
bg2Rrk2

rk2Rbd

[
ωx

ωy − β̇ + ρ̇2
ωz

]
(70)

Which, after leveraging Equations 1 - 8 provides:

ζy1 = (ωy + β̇) cos(ψ1)

− (ωx cos(β)− ωz sin(β)) sin(ψ1) (71)

ζy2 = (ωy − β̇) cos(ψ2)

− (ωx cos(β) + ωz sin(β)) sin(ψ2) (72)

ζy3 = ωx + β̇ + ρ̇1 (73)

ζy4 = ωx − β̇ + ρ̇2 (74)

ζy5 = (ωx + β̇ + ρ̇1) cos(ψ5)

− (ωx cos(β + ρ1)− ωz sin(β + ρ1)) sin(ψ5) (75)

ζy6 = (ωx − β̇ + ρ̇2) cos(ψ6)

− (ωx cos(ρ2 − β)− ωz sin(ρ2 − β)) sin(ψ6) (76)

Substituting those variables into the right sides of Equations
59 - 64 and expanding the left side using the prior equations
enables us to obtain the desired wheel rate equations:

θ̇1 = ((cos(β) sin(η1) + cos(η1) cos(ψ1) sin(β))

(ωyxod − ż + ωxyof + lfd cos(β − κ1)(β̇ + ωy))

− (sin(β) sin(η1)− cos(β) cos(η1) cos(ψ1))(ẋ+

ωyzod + yofωz − lfd sin(β − κ1)(β̇ + ωy)) +Rw

(cos(ψ1)(β̇ + ωy)− ωx cos(β) sin(ψ1) + ωz sin(β)

sin(ψ1)) + cos(η1) sin(ψ1)(−ωxzod + xodωz

+ lfdωz cos(β − κ1) + lfdωx sin(β − κ1)))/Rw (77)

θ̇2 = ((sin(β) sin(η2) + cos(β) cos(η2) cos(ψ2))

(ẋ+ ωyzod − yofωz − lfd sin(β + κ1)(β̇ − ωy))
−Rw(cos(ψ2)(β̇ − ωy) + ωx cos(β) sin(ψ2)

+ ωz sin(β) sin(ψ2))− (cos(β) sin(η2)− cos(η2)

cos(ψ2) sin(β))(ż − ωyxod + ωxyof + lfd cos(β + κ1)

(β̇ − ωy)) + cos(η2) sin(ψ2)(xodωz − ωxzod
+ lfdωz cos(β + κ1)− lfdωx sin(β + κ1)))/Rw (78)
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θ̇3 = (Rw(β̇ + ωy + ρ̇1) + ẋ cos(β + η3 + ρ1)

− ż sin(β + η3 + ρ1) + β̇ldb sin(κ2 − η3 − ρ1)
+ ldbωy sin(κ2 − η3 − ρ1) + ωyzod cos(β + η3 + ρ1)

+ yomωz cos(β + η3 + ρ1) + ωyxod sin(β + η3 + ρ1)

+ ωxyom sin(β + η3 + ρ1) + β̇lbm sin(κ3 + η3)

+ lbmωy sin(κ3 + η3) + lbmρ̇1 sin(κ3 + η3))/Rw (79)

θ̇4 = (ẋ cos(β − η4 − ρ2) + ż sin(β − η4 − ρ2)
+Rw(ωy − β̇ + ρ̇2)− β̇ldb sin(κ2 − η4 − ρ2)
+ ωyzod cos(β − η4 − ρ2)− yomωz cos(β − η4 − ρ2)
+ ldbωy sin(κ2 − η4 − ρ2)− ωyxod sin(β − η4 − ρ2)
+ ωxyom sin(β − η4 − ρ2)− β̇lbm sin(κ3 + η4)

+ lbmωy sin(κ3 + η4) + lbmρ̇2 sin(κ3 + η4))/Rw (80)

θ̇5 = −((cos(β)(cos(ρ1) sin(η5) + cos(η5) cos(ψ5) sin(ρ1))

− sin(β)(sin(η5) sin(ρ1)− cos(η5) cos(ψ5) cos(ρ1)))

(ż − ωyxod − ωxyor + β̇lbr cos(β + κ4 + ρ1)

+ lbrωy cos(β + κ4 + ρ1) + lbrρ̇1 cos(β + κ4 + ρ1)

+ β̇ldb cos(β + κ2) + ldbωy cos(β + κ2))

−Rw(cos(ψ5)(β̇ + ωy + ρ̇1)− ωx cos(β + ρ1) sin(ψ5)

+ ωz sin(β + ρ1) sin(ψ5)) + (cos(β)(sin(η5) sin(ρ1)

− cos(η5) cos(ψ5) cos(ρ1)) + sin(β)(cos(ρ1) sin(η5)

+ cos(η5) cos(ψ5) sin(ρ1)))(ẋ+ ωyzod + yorωz

+ β̇lbr sin(β + κ4 + ρ1) + lbrωy sin(β + κ4 + ρ1)

+ lbrρ̇1 sin(β + κ4 + ρ1) + β̇ldb sin(β + κ2)

+ ldbωy sin(β + κ2)) + cos(η5) sin(ψ5)(ωxzod − xodωz
+ lbrωz cos(β + κ4 + ρ1) + lbrωx sin(β + κ4 + ρ1)

+ ldbωz cos(β + κ2) + ldbωx sin(β + κ2)))/Rw (81)

θ̇6 = −((cos(β)(cos(ρ2) sin(η6) + cos(η6) cos(ψ6) sin(ρ2))

+ sin(β)(sin(η6) sin(ρ2)− cos(η6) cos(ψ6) cos(ρ2)))

(ż − ωyxod + ωxyor + lbrρ̇2 cos(β − κ4 − ρ2)
− β̇ldb cos(β − κ2) + ldbωy cos(β − κ2)
− β̇lbr cos(β − κ4 − ρ2) + lbrωy cos(β − κ4 − ρ2))
+Rw(ωx sin(ψ6) cos(β − ρ2)− cos(ψ6)(ωy − β̇ + ρ̇2)

+ ωz sin(β − ρ2) sin(ψ6)) + (cos(β)(sin(η6) sin(ρ2)

− cos(η6) cos(ψ6) cos(ρ2))− sin(β)(cos(ρ2) sin(η6)

+ cos(η6) cos(ψ6) sin(ρ2)))(ẋ+ ωyzod − yorωz
+ β̇lbr sin(β − κ4 − ρ2)− lbrωy sin(β − κ4 − ρ2)
− lbrρ̇2 sin(β − κ4 − ρ2) + β̇ldb sin(β − κ2)
− ldbωy sin(β − κ2))− cos(η6) sin(ψ6)(xodωz − ωxzod
− lbrωz cos(β − κ4 − ρ2) + lbrωx sin(β − κ4 − ρ2)
− ldbωz cos(β − κ2) + ldbωx sin(β − κ2)))/Rw (82)

Hence we can compute the wheel rate commands to achieve
a desired rover motion (body linear velocity and heading
rate). However, the mobility system of the Mars rover is
not designed to achieve a pre-determined rover velocity, nor
heading rate. Instead, it drives the wheels as fast as possible,
i.e. setting at least one wheel to its maximum rate θ̇max,

based on the arc being driven which defines the proportion
of longitudinal motion and heading change (i.e. the ratio of ẋ
and ωz).

Our approach is to turn the wheel rate equations around to
express the rover’s linear velocity (and heading rate for turns)
as a function of the wheel rate commands, then set all wheel
rate commands to the max value θ̇max, and determine the
minimum absolute value of the computed rover velocity (or
heading rate for turns) over all wheels. This technique allows
us to determine which wheel gets to its max angular rate
first and deduce the associated maximum rover velocity and
heading rate.

To do this we first need to relate ż, ωz , and ẋ since a single
(wheel rate) equation can only solve for a single unknown.

• For straight driving, our desired heading rate is zero:

ωz = 0 (83)

Thus we only need to express ż as a function of ẋ.
• For turns, we chose to solve for the heading rate ωz rather
than ẋ, since the latter is zero for the special case of turns in
place (where the turn radius is zero). We can use the known
turn radius r to relate ẋ to ωz:

ẋ = r ωz (84)

Then, if we can express ż as a function of ẋ, like in the
straight driving case, we can also express ż as a function of
ωz (using Equation 84).

To express ż as a function of ẋ, we compute the linear
velocity of each wheel in its contact angle frame, and leverage
the fact that the z component, which depends on both ẋ and ż,
is zero (since by definition the contact angle frame is rotated
so that the wheel velocity vector in the x-z plane is along the
x axis only):

∀i ∈ [1, 6], ηivzAi
= 0 (85)

Expanding Equations 53 - 58 and applying Equation 85 above
to their z components, we get:

∀i ∈ [1, 6], ai1ẋ+ ai2ż + ai3ωz = bi (86)

With:

a11 = cos(η1) sin(β) + cos(β) cos(ψ1) sin(η1) (87)
a12 = cos(β) cos(η1)− cos(ψ1) sin(β) sin(η1) (88)
a13 = yof (cos(η1) sin(β) + cos(β) cos(ψ1) sin(η1))

+ sin(η1) sin(ψ1)(xod + lfd cos(β − κ1)) (89)
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Figure 6. Data flow for the Traction Control algorithm implementation.

b1 = (cos(β) cos(η1)− cos(ψ1) sin(β) sin(η1))

(ωyxod + ωxyof + lfd cos(β − κ1)
(β̇ + ωy))− (cos(η1) sin(β) + cos(β) cos(ψ1) sin(η1))

(ωyzod − lfd sin(β − κ1)(β̇ + ωy))

+ sin(η1) sin(ψ1)(ωxzod − lfdωx sin(β − κ1)) (90)
a21 = cos(β) cos(ψ2) sin(η2)− cos(η2) sin(β) (91)
a22 = cos(β) cos(η2) + cos(ψ2) sin(β) sin(η2) (92)
a23 = yof (cos(η2) sin(β)− cos(β) cos(ψ2) sin(η2))

+ sin(η2) sin(ψ2)(xod + lfd cos(β + κ1)) (93)
b2 = (cos(η2) sin(β)− cos(β) cos(ψ2) sin(η2))

(ωyzod − lfd sin(β + κ1)(β̇ − ωy))
− (cos(β) cos(η2) + cos(ψ2) sin(β) sin(η2))

(ωxyof − ωyxod + lfd cos(β + κ1)(β̇ − ωy))
+ sin(η2) sin(ψ2)(ωxzod + lfdωx sin(β + κ1)) (94)

a31 = sin(β + η3 + ρ1) (95)
a32 = cos(β + η3 + ρ1) (96)
a33 = yom sin(β + η3 + ρ1) (97)
b3 = ωyxod cos(β + η3 + ρ1) + ωxyom cos(β + η3 + ρ1)

− ωyzod sin(β + η3 + ρ1)− β̇ldb cos(η3 − κ2 + ρ1)

− ldbωy cos(η3 − κ2 + ρ1) + β̇lbm cos(η3 + κ3)

+ lbmωy cos(η3 + κ3) + lbmρ̇1 cos(η3 + κ3) (98)
a41 = sin(η4 − β + ρ2) (99)
a42 = cos(η4 − β + ρ2) (100)
a43 = −yom sin(η4 − β + ρ2) (101)

b4 = β̇ldb cos(η4 − κ2 + ρ2)− ldbωy cos(η4 − κ2 + ρ2)

+ ωyxod cos(η4 − β + ρ2)− ωxyom cos(η4 − β + ρ2)

− ωyzod sin(η4 − β + ρ2)− β̇lbm cos(η4 + κ3)

+ lbmωy cos(η4 + κ3) + lbmρ̇2 cos(η4 + κ3) (102)
a51 = cos(β)(cos(η5) sin(ρ1) + cos(ψ5) cos(ρ1) sin(η5))

+ sin(β)(cos(η5) cos(ρ1)− cos(ψ5) sin(η5) sin(ρ1))
(103)

a52 = cos(β)(cos(η5) cos(ρ1)− cos(ψ5) sin(η5) sin(ρ1))

− sin(β)(cos(η5) sin(ρ1) + cos(ψ5) cos(ρ1) sin(η5))
(104)

a53 = yor(cos(β)(cos(η5) sin(ρ1) + cos(ψ5) cos(ρ1) sin(η5))

+ sin(β)(cos(η5) cos(ρ1)− cos(ψ5) sin(η5) sin(ρ1)))

− sin(η5) sin(ψ5)(ldb cos(β + κ2)− xod
+ lbr cos(β + κ4 + ρ1)) (105)

b5 = ωx sin(η5) sin(ψ5)(zod + ldb sin(β + κ2)

+ lbr sin(β + κ4 + ρ1))− (cos(β)(cos(η5) sin(ρ1)

+ cos(ψ5) cos(ρ1) sin(η5)) + sin(β)(cos(η5) cos(ρ1)

− cos(ψ5) sin(η5) sin(ρ1)))(ωyzod + β̇lbr sin(β + κ4

+ ρ1) + lbrωy sin(β + κ4 + ρ1) + lbrρ̇1 sin(β + κ4

+ ρ1) + β̇ldb sin(β + κ2) + ldbωy sin(β + κ2))

− (cos(β)(cos(η5) cos(ρ1)− cos(ψ5) sin(η5) sin(ρ1))

− sin(β)(cos(η5) sin(ρ1) + cos(ψ5) cos(ρ1) sin(η5)))

(β̇lbr cos(β + κ4 + ρ1)− ωxyor − ωyxod
+ lbrωy cos(β + κ4 + ρ1) + lbrρ̇1 cos(β + κ4 + ρ1)

+ β̇ldb cos(β + κ2) + ldbωy cos(β + κ2)) (106)
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a61 = cos(β)(cos(η6) sin(ρ2) + cos(ψ6) cos(ρ2) sin(η6))

− sin(β)(cos(η6) cos(ρ2)− cos(ψ6) sin(η6) sin(ρ2))
(107)

a62 = cos(β)(cos(η6) cos(ρ2)− cos(ψ6) sin(η6) sin(ρ2))

+ sin(β)(cos(η6) sin(ρ2) + cos(ψ6) cos(ρ2) sin(η6))
(108)

a63 = −yor(cos(β)(cos(η6) sin(ρ2)
+ cos(ψ6) cos(ρ2) sin(η6))− sin(β)(cos(η6) cos(ρ2)

− cos(ψ6) sin(η6) sin(ρ2)))− sin(η6) sin(ψ6)

(lbr cos(κ4 − β + ρ2)− xod + ldb cos(β − κ2)) (109)
b6 = sin(η6) sin(ψ6)(ωxzod − ldbωx sin(β − κ2)

+ lbrωx sin(κ4 − β + ρ2))− (cos(β)(cos(η6) sin(ρ2)

+ cos(ψ6) cos(ρ2) sin(η6))− sin(β)(cos(η6) cos(ρ2)

− cos(ψ6) sin(η6) sin(ρ2)))(ωyzod + β̇ldb sin(β − κ2)
− ldbωy sin(β − κ2)− β̇lbr sin(κ4 − β + ρ2)

+ lbrωy sin(κ4 − β + ρ2) + lbrρ̇2 sin(κ4 − β + ρ2))

− (cos(β)(cos(η6) cos(ρ2)− cos(ψ6) sin(η6) sin(ρ2))

+ sin(β)(cos(η6) sin(ρ2) + cos(ψ6) cos(ρ2) sin(η6)))

(ωxyor − ωyxod − β̇ldb cos(β − κ2)
+ ldbωy cos(β − κ2)− β̇lbr cos(κ4 − β + ρ2)

+ lbrωy cos(κ4 − β + ρ2) + lbrρ̇2 cos(κ4 − β + ρ2))
(110)

Based on the above we define:

• For straight driving (ωz = 0), for wheel i:

ż = ci − diẋ (111)

With:

ci =
bi
ai2

(112)

di =
ai1
ai2

(113)

• For turns of turn radius r (ẋ = r ωz), for wheel i:

ż = ci − eiωz (114)

With:

ei =
ai3 + r ai1

ai2
(115)

Note that we really only need one of the equations relating ż
to ẋ (from Equation 111) and ż to ωz (from Equation 114).
However, using the equation associated with the same wheel
for which we are trying to compute ẋ and ωz does simplify the
formulas. In particular it removes some denominators, and
hence the risk of dividing by zero, and makes the expressions
of the remaining denominators easier to interpret (they be-
come zero if and only if the associated wheel is perpendicular
to the direction of motion).

We then use Equations 83 - 115 to substitute ωz and ż in
Equations 77 - 82 and compute the ẋ for straight driving, and
ωz for turns, associated with each wheel turning at its max

Figure 7. 2D Simulator used to validate our algorithm.

rate dir θ̇max (where dir represents the direction of rotation
of the wheel).

The algorithm to calculate the commanded wheel rates can be
summarized as follows:

(1) Compute the desired ẋ, ż, and ωz that brings at least one
wheel to its maximum rate.

– For straight driving:
imin = argmini∈[1,6] |ẋi|
ẋ = ẋimin

ż = cimin
− dimin

ẋ, using Equations 87 - 113
ωz = 0

– For turns:
imin = argmini∈[1,6] |ωiz|
ωz = ωimin

z
ẋ = r ωz
ż = cimin − eiminωz , using Equations 87 - 115

(2) Calculate the wheel rate commands using Equations 77 -
82.

Figure 6 shows the functional block diagram associated with
the implementation of the entire Traction Control algorithm.

Simulation Testing

Both a 2D and a 3D motion simulator were developed to
verify the output of the algorithm (see Figure 7). For the
2D case, the ideal ”no-slip” wheel rates were calculated from
the equation of the terrain curve. For the 3D case, we used
a straight line distance approximation by settling the rover
on the terrain at very short spatial intervals. In both cases
we verified that the simulated, ideal wheel rates match our
algorithm’s output when we remove the approximation on
the linear velocity of the rover origin (see the Calculation of
the Contact Angle Estimates subsection) and instead use the
correct rover velocity, which can be computed in simulation.

Figure 8 shows a comparison of the ideal wheel rates in
simulation (left), the wheel rates generated by our algorithm
in simulation (middle), and the wheel rates measured on our
rover testbed when commanded by our algorithm (right), for
a straight arc test case where the right front wheel of the rover
drives over a rock while the others remain on flat ground.
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Figure 8. Comparison of the wheel rates obtained in simulation with perfect knowledge (left), output by our algorithm in
simulation (middle), and measured in the rover testbed (VSTB) when using our algorithm (right).

3. PERFORMANCE IN TEST
In this section the results of tests performed during both
development and validation and verification (V&V) are dis-
cussed. The example results presented emphasize the re-
duction of loads and drive actuator torques and are further
broken down into three subsections: i) development tests
performed on benign, single obstacle terrain, ii) tests per-
formed over complex terrain, and iii) yaw reduction. Here, the
term complex is used to describe a series of decimeter-scale
obstacles, which when traversed, yield complex vehicle-
terrain interaction in which measurements made by the IMU
and suspension resolvers are a function of multiple ground
interactions. It should be noted that the majority of loads
data gathered during this task were collected to enable the
drawing of qualitative conclusions regarding the efficacy of
Traction Control. That is, due to the complexity and range of
all possible terrains Curiosity may encounter over the course
of its remaining life, an attempt to quantify the precise load
reduction on one, or a small subset of, these terrains was
not performed. Rather, the test philosophy adopted here
was to perform tests over a wide array of terrains under
various driving conditions such that the expected average load
reduction could be approximated.

Benign Single Obstacle Terrain Testing

The Scarecrow rover, shown in Figure 9, was developed in
support of MSL mobility system performance evaluation.

The Scarecrow mobility system (wheels, rocker, bogies, and
differential) is kinematically identical to Curiosity and the
VSTB and has a mass of 318 kg. This reduced mass yields
a system that weighs approximately the same on Earth as
Curiosity does on Mars, enabling realistic mobility tests to
be performed both at JPL’s Mars Yard and in the field. Much
of the physical Traction Control testing was performed using
this vehicle, while the VSTB was used primarily for software
validation.

Two systems of loads measurement were used throughout
testing; a ground-emplaced load cell affixed to the bottom of
a 15 cm radius hemispherical dome, and three hub-mounted
load cells, which were attached to the center of each of the
vehicle’s starboard side wheels. The hemispherical dome
functioned both as a measurement system and a simplified
obstacle, whereby a wheel’s ascent and descent of the dome
followed a continuous arc rather than a step function. The
hemisphere was constructed of aluminum and was anchored
to the ground by four 12” stakes, yielding a rigid structure
with negligible flexure during traverses. The ATI Omega 160
six axis force-torque sensor was used for both the ground and
hub-mounted load cell.

Figure 10 shows an example of the reduction in measured
resultant load (about X, Y, and Z axes) of the hub-mounted
load cells during a Scarecrow traverse of the dome obstacle.
The top graph represents a Traction Control on run, while
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Figure 9. The Scarecrow mobility test system.

the bottom graph shows the loads with Traction Control off.
Blue represents the right front (RF) wheel, greed the right
mid (RM) and black the right rear (RR). While each wheel
encounters the obstacle, the remaining five wheels remain on
relatively flat terrain, enabling the clear temporal demarcation
of individual wheel contacts. This is useful in both the
recreation of events in simulation and also in the teasing
out Traction Control behaviors during data analysis. In the
provided example, the algorithm reduces the resultant loads
on the front wheels, both peak and average. Two other ob-
servations are worth noting. 1) the effect of Traction Control
reduces the loads on the front and mid wheels more so than
the rear wheel, and 2) Traction Control also reduces the extent
to which non-obstacle-climbing wheels are unloaded. These
points were observed to be true throughout both Scarecrow
and VSTB testing. Point 1 can be explained by considering
the geometry of the rocker-bogie suspension system. Under
this geometry, both the front and mid wheels are affixed to
leading suspension arms. That is, the angle from the vertical
to the suspension arm is in the direction of travel. A trailing
wheel, such as the rear wheels (during forward motion) has its
suspension arm rotated in the opposite direction. This leads to
a case similar to that of a person trying to get a dolly or cart
over a curb. If the person pushes (leading wheel) the dolly,
the force required to surmount the obstacle is much greater
than if the dolly were pulled (trailing wheel). In the leading
wheel case, Traction Control is able to modulate the speed
of the non-obstacle-climbing wheels such that they do not
impart excessive pushing loads, and the reduction is wheel
loading is highly evident. In the trailing wheel case, the
resultant loads are significantly lower due to the geometry
of the vehicle, which is turn reduces the noticeable effect of
Traction Control. Figure 11 shows similar results for test
cases run with the VSTB. Here, similar trends of leading
wheels seeing significant reductions in loading with traction
control enabled can be observed.

During development testing of the Traction Control algorithm
it was calculated that the average reduction in resultant loads
on relatively benign terrain was 19% for front leading wheels,

Figure 10. Peak loads recorded by ground-based load cell
during a single straight forward and backward drive over the
dome with the VSTB right wheels. This test was performed

multiple times with similar results each time.

Figure 11. Peak loads recorded by ground-based load cell
during a single straight forward and backward drive over the
dome with the VSTB right wheels. This test was performed

multiple times with similar results each time.
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Figure 12. Complex terrain tracks used in Scarecrow
development testing. The aluminum dome, which was

mounted to the top of a load cell, is one of the objects driven
over by the right wheels.

while middle leading wheels experienced an 11% reduction.

Complex Terrain Testing

Tests with both the VSTB and Scarecrow rovers were also
performed on complex terrain on tracks similar to that shown
in Figure 12. Figure 13 shows the reduction in loads during a
traction control run over the complex, loose terrain. Note that
the runs are compared only for the first 90 seconds. After this
time, it was observed that the vehicle would consistently drive
off track without traction control due to inadvertent yaw. This
point is addressed in the following subsection.

To compensate for inadvertent yaw, rigid, high friction tiles
were used to cement the obstacles into the ground. The
Scarecrow rover was commanded to performed a 10 meter arc
across the tiles, which were spaced at approximately 1 meter
intervals. The tiles were placed such that the obstacles being
traversed by either the right or left sides of the vehicle were
approximately symmetric. This course was driven three times
with Traction Control enabled and three times with Traction
Control disabled. Example RR wheel results are shown in
Figures 15 and 16. These figures show the cumulative fre-
quency distribution of loads and drive torques during Traction
Control enabled and disabled runs. Green represents Traction
Control enabled, while red represents disabled. The leftward
shift in the CDF curve clearly identifies a reduction in the
integral of both histograms, demonstrating a lowering of the
forces and required drive torques during the run.

Following the cemented tile testing, a summary was produced
to detail the average reduction of loads and drive torques.
As seen throughout development, Traction Control provides
a modest yet consistent reduction in wheel loading. Drive ac-
tuator torques were also significantly reduced. This summary
is given in Figure 17.

Yaw Reduction Testing

An auxiliary benefit of the Traction Control algorithm is the
reduction of unintended yaw during longer drive steps. By
reducing the degree to which wheels push/pull each other into
obstacles or sand ripples, Traction Control has the effect of
balancing loads across its right and left sides. This balancing
aids in the reduction of yaw on rigid terrain, and both yaw and
wheel slip on sandy terrains. Figure 13 shows the reduction of
resultant loads during a traverse of the complex terrain, shown
in Figure 12. During tests utilizing the VSTB, yaw reduction
was also noted while traversing non-symmetric sand ripples,

Figure 13. Resultant loads on hub-mounted force-torque
sensors during traverse of complex obstacle track.

Figure 14. Complex terrain course constructed with
high-friction, embedded rock tiles.
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Figure 15. Cumulative frequency distribtion of resultant
loads on Scarecrow RR wheel during traverse of high

friction, embedded rock tiles. Green and red correspond to
Traction Control enabled and disabled, respectively.

Figure 16. Cumulative distribution of drive torques
experienced by Scarecrow RR wheel during traverse of high
friction, embedded rock tiles. Green and red correspond to

Traction Control enabled and disabled, respectivly.

as shown in Figure 18. The decimeter-scale ripples resulted
in significant inadvertent yaw during non-traction control
runs, while this was abated following the implementation of
traction control, as shown in Figure 19.

As is clear in Figure 19, Traction Control maintains a rel-
atively steady heading while the run with Traction Control
disabled resulted in significant delta yaw over a relatively
short arc length. While this is an ancilary effect and not one
that was sought at the outset of this task, it is believed that this
may be seen as a significant advantage offered by Traction
Control for future projects such as Mars 2020.

4. INTEGRATION INTO MISSION OPERATIONS
The development of Traction Control software was com-
pleted long after the most recent update to Curiosity’s flight
software. So it was incorporated into the MSL flight system
as a hot patch applied to the current (R12) version of flight
software. We assessed the impact the new behavior would
have on the general planning model (each day’s plan predicts
power, data, and duration of all activities), as well as the
changes imposed on the creation and validation of sequences
of drive commands.

Figure 17. Summary of the reduction in average load and
drive torques over high friction tiles.

Figure 18. VSTB yaw testing on loose sand.

Figure 19. Recorded delta yaw comparison between
TRCTL on and off runs over rippled sand.
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Flight Software Integration

MSL has fully updated its onboard flight software (FSW) four
times since launch. The most recent full update was the R12
release, which was built in August 2014 (prior to completion
of this algorithm) and deployed in January 2015. The R12 re-
lease incorporated updates that simplified the later integration
of Traction Control. Those updates included: software hooks
added to invoke a function pointer to evaluate drive wheel
rates at 8 Hz; extra placeholder integer and floating point
parameters; a new Data Product Object downlink record type
with placeholders for a small number of integer and floating
point downlink values; and new commands to enable and
disable the future capability.

Once the new software was completed, it was compiled into a
single object file following standard protocols for MSL FSW
hot patches [BM15]. In each bootup period that requires it,
this file is loaded into the VxWorks operating system and
assigned to a function pointer global variable via a shell
command script. Traction Control then becomes available for
use during the remainder of the current boot cycle.

Incorporating this software as a patch allowed us to take
advantage of this capability relatively quickly. MSL project
procedures require thorough regression testing and plan-
ning across all FSW when updating the whole FSW image,
whereas a patch only requires regression test of mobility
capabilities. The patch is also hundreds of times smaller than
a full FSW load would be, requiring fewer days to uplink to
Mars and reducing the impact to the operations schedule.

Mission Planning Integration

Several aspects of operations planning were impacted by the
ongoing use of this new software. The MSL ground oper-
ations team models the Duration, Power, and Data Volume
usage of all onboard activities. Traction Control software is
active during nearly all drive modes, so the resource models
for all drive activities were updated.

Based on Earth-based tests, we predicted that Traction Con-
trol would slow down drives by no more than 25% compared
to pure-Ackermann drives. Our initial drives on Mars were
planned taking this worst-case model into account. But while
the actual slowdown is terrain-dependent (the more uneven
the terrain, the greater the overall slowdown), in practice we
have observed slowdowns only on the order of 10% and have
since updated our models to presume no more than 15%.
Power modeling was not changed, except for the implication
that longer drives would require more CPU and Inertial Mea-
surement Unit (IMU) energy overall: this implementation
adds less than 3% to the total CPU usage while driving. But in
terms of Data Volume, the extra data generated by the initial
implementation was significant; it typically nearly doubles
the amount of high-rate data collected due to the records of
individual wheel speed commands being collected at 8 Hz.

All MSL drive command sequences are constructed by the
Rover Planner team, so their environment was updated to
support nominal use of this new capability. Standard startup
command sequences were updated to load and enable the
software patch, removing the need to explicitly remember
to turn it on for each drive. The command sequence static
analyzer RP-check [MMBA18] was updated to issue a warn-
ing for any drive commanded without Traction Control being
enabled. The Rover Sequencing and Visualization Program
(RSVP) [WHC+06] Surface Simulation component was up-
dated to accept an average expected Traction Control Speed

Figure 20. The average Traction Control Speed Ratio for
Sol 1814 is 0.924 from 2545 samples.

Ratio (defined below) as input and adjust planned drive dura-
tions accordingly. And strategic downlink analysis tools were
updated to enable Mobility Downlink and Rover Planner
team members to quickly measure the actual slowdown seen
over any number of recent drives, so they could apply it to the
duration estimate needed for the current drive.

Downlink Inputs to Tactical Planning

Traction Control software generates downlink telemetry to
enable ground understanding of its performance. Section 5
will cover our detailed downlink assessment capabilities, and
Table 1 shows a list of all the values available for daily
and long-term trending queries. These fields are populated
within the MSL Strategic Mobility database, an update to
the comparable system used for the Mars Exploration Rover
Spirit and Opportunity missions [BLM08].

For planning purposes, the primary number of interest is the
Traction Control Speed Ratio, defined as follows. For any
given 8 Hz sample, we know the speed at which each wheel
is commanded to drive. We can also compute the equivalent
speed that would have been commanded by the planar (double
Ackermann) style non-Traction Control driving algorithm.
To estimate the overall progress of the vehicle, we compute
the ratio of commanded speed / Ackermann speed for each
wheel, disregard the slowest wheel (which might be com-
manded at 0 m/s if it rests on the center of the turning circle)
then pick the median of the five remaining values. Figure 20
shows this Traction Control Speed Ratio evaluated at 8 Hz
during drive operations in 2545 samples from Sol 1814.

Rover Planners use the average Speed Ratio over any given
range of sols to inform their duration estimate for the next
drive. Overall, the average Speed Ratio during the first six
months of operations from sol 1646 through 1822 is 0.899
from 351992 samples. That is, Traction Control tends to drive
10% slower than planar drives in the current terrain.

However, the net impact on the whole system has been
smaller. MSL typically uses onboard image processing to re-
fine its position estimate, using a Visual Odometry algorithm
[MCM07], [JGCM08]. MSL typically drives long distances
in 1 meter steps, stopping after each step to acquire new
Visual Odometry images and process them. The time needed
to stop and process images is nearly double the time needed to
drive the 1 meter step, which means the time spent physically
moving is less than 40% of the total drive activity; hence the
slowdown impact of Traction Control on Visual Odometry-
enabled drives is less than 4% on average.
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Field Description Units
f trctl active Active Boolean
f trctl algorithm Algorithm 0 ADAPTIVE, 1 PLANAR
f trctl control mode Mode 0 RATE, 1 POS
f trctl telem mode Orientation Telemetry (otlm) Mode 0 WORLD, 1 ROVER

f trctl speed ratio Ratio of Commanded to Ackermann Reference Speed Float between [0, 1]

f differential rate Differential Angular Velocity radians/sec
f bogie l rate Bogie L Angular Velocity radians/sec
f bogie r rate Bogie R Angular Velocity radians/sec

f wheelie lm LM Wheelie Correction Active Boolean
f wheelie lr LR Wheelie Correction Active Boolean
f wheelie rm RM Wheelie Correction Active Boolean
f wheelie rr RR Wheelie Correction Active Boolean

f world x rate Local Level Frame X Rate radians/sec
f world y rate Local Level Frame Y Rate radians/sec
f world z rate Local Level Frame Z Rate radians/sec
f rover x rate Rover Frame X Rate radians/sec
f rover y rate Rover Frame Y Rate radians/sec
f rover z rate Rover Frame Z Rate radians/sec

Fields that are repeated for each wheel: Left/Right, Front/Middle/Rear
f contact angle (lf, lm, lr, rf, rm, rr) Wheel Contact Angle radians
f theta dot cmd (lf, lm, lr, rf, rm, rr) Wheel Commanded Rotational Speed radians/sec
f wheel rate cmd (lf, lm, lr, rf, rm, rr) Wheel Commanded Linear Speed cm/sec
f wheel rate ack (lf, lm, lr, rf, rm, rr) Ackermann Wheel Reference Linear Speed cm/sec
f contact fail (lf, lm, lr, rf, rm, rr) Wheel Contact Angle Computation Failed Boolean
f rate fail (lf, lm, lr, rf, rm, rr) Wheel Rate Computation Failed Boolean

Table 1. Strategic Database names for high-rate Traction Control downlink data (collected at 8 Hz)

5. ASSESSMENT TOOLS
Motion history data products are generated whenever rover
mobility is commanded. Since R12, these data products
may record a subset of the estimates and control signals
computed by the Traction Control algorithm, though they are
only populated when it is enabled via the hot patch. A suite
of analysis tools were developed to process mobility data
products and assess its performance in both the ground testing
and flight phases. Per Figure 5, of particular interest are time-
series plots of the following quantities: rover attitude angles
and rates, suspension (bogie and differential) angles and
calculated rates, estimated contact angles for each wheel, and
commanded angular velocity for each drive actuator. Where
possible, the magnitude axes were pinned for informative
comparison across all drives in both the ground test and flight
phases.

During ground testing, the quality of the contact angle es-
timates was assessed relative to both the configured obstacle
environment and the commanded motion for that test. For ex-
ample, driving on flat terrain should entail estimated contact
angles that are small in magnitude and zero-mean, whereas
the front left wheel driving over a hemisphere should (all else
being equal) result in a clear signature for only that wheel.
In flight, a comparison is possible only with respect to a
computed mesh, which has its own error sources; however,
any unrealistic contact angle estimates that differ significantly
from terrain models would be observable. The commanded
angular velocities, which are the Traction Control outputs,
can be assessed for consistency with the joint egomotion
estimate, including contact angles, attitude angles and rates,
and suspension angles and rates. The juxtaposition of the
contact angle and angular rate plots was crucial for algorithm
assessment.

Also analyzed were time-series plots for the current estimated
by the motor controller flight software to be supplied to
each drive actuator in response to the wheel angular rates
commanded by Traction Control. These plots were used
to verify that Traction Control did not significantly increase
the current demanded by the drive actuators during mobility
activities. For each drive actuator, the current, voltage, and
wheel contact angle estimates were also used to plot modeled
torque on each wheel. Because torque is indirectly comanded
via wheel rate, correspondence between the shape of the
contact angle estimate curves and the drive torque curves
would be a measure of the efficiency of the algorithm when
scaling obstacles and is the subject of ongoing investigation.

After free-floating wheelies on the middle wheels were in-
duced in some test configurations, wheelie detection and
suppression logic was added, with indicator variables for the
wheelie statuses being exposed in telemetry. The combina-
tion of these time-series plots was helpful in formulating and
verifying the wheelie detection and suppression strategies.

6. PERFORMANCE IN FLIGHT
Three checkout tests were performed on Mars after software
delivery was approved in March 2017. For checkout test 1,
performed on Sol 1644, the software patch was uploaded
to Curiosity and initial parameters were set, saved in non-
volatile memory, and recorded in a drive module data product.
After the drive module data product was downlinked, the
operations team verified the parameters were correctly saved
on-board the rover. For checkout test 2, performed on Sol
1646, a short (5 meter) drive was executed with Traction
Control enabled, logging drive telemetry at 64Hz. After on-
console assessment of the telemetry by the operations team,
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Figure 21. Raw drive currents 1 kilometer before and after
nominal use of Traction Control. For a qualitative

comparison of the data before and after Sol 1678, a
horizontal reference line is drawn at 1.5A. This graph

illustrates one benefit of the new approach is lower peak
drive currents, but one cost is longer drive times.

Figure 22. The rover elevation rate of change is similar for
a period before starting nominal use of Traction Control (as

denoted by the green arrow) and for a period afterward.
Since positive z is downward, the rover was driving uphill.

Figure 23. The rover pitch during the selected Traction
Control disabled and enabled data sets are similar.

Figure 24. The rover suspension range of motion during the
selected Traction Control disabled and enabled data sets are

similar.

Figure 25. Max rover slip for the drives in the Traction
Control disabled and enabled data sets. The Sol 1703 drive
faulted due to excessive slip while driving uphill on sand.

The average max rover slip was 2.1% lower for the Traction
Control enabled data set.

the activity lead approved proceeding to checkout test 3. For
checkout test 3, performed on Sol 1662, a 20 meter drive
was executed with Traction Control enabled, again logging
drive telemetry at 64Hz. Following a review of checkout
test telemetry with MSL management, the new capability was
approved for nominal use on Curiosity in April 2017.

Since its first nominal use on Sol 1678, Curiosity has driven
1.450 kilometers in 68 drives as of October 6, 2016, almost all
of it with Traction Control enabled. The exceptions are three
1.2 meter drive segments on Sols 1682, 1730, and 1798 to
perform full MAHLI wheel imaging (FMWI), and 2.5 meters
at the beginning of the Sol 1787 drive when recovering from a
drive fault on the previous sol that left the right bogie close to
its soft limit. FMWI is currently performed every 500 meters
to assess changes in damage to the wheels. Since it consists of
rotating the wheels to five equidistant positions for imaging,
Traction Control is disabled to ensure that each wheel turns
the same amount.

Since there are no sensors on Curiosity to measure the loads
on wheels, the operations team monitors wheel currents as an
indicator of how much work each wheel is doing. Figure 21
shows the raw drive currents over a 2 kilometer period; 1
kilometer before and after nominal use of Traction Control
began on Sol 1678. The spikes above 3.0A are mostly from
open-loop startup current at the beginning of each drive. The
lower drive currents during the checkout tests are in-part due
to driving on less-complex terrain during the checkout tests.
The mean of the mean current for each drive step over all
wheels for the 1 kilometer before and after Traction Control
was enabled for nominal use on Sol 1678 was 350 mA and
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Figure 26. Average of average drive currents for the
Traction Control disabled and enabled data sets. The average

of average wheel current for all wheels was lower for the
enabled data set.

Figure 27. Compressed motion history data product size for
the Traction Control disabled and enabled data set. On
average, the motion history data product size was 1.91x

larger when the new capability is enabled.

Figure 28. Drive traverse rate for the Traction Control
disabled and enabled data sets. On average, the enabled

drives took 11.2% longer. The Sol 1682 FMWI drive was
not included in this analysis since wheel imaging is

performed after every drive motion.

321 mA. The mean of the max current for each drive step over
all wheels for the 1 kilometer before and after Sol 1678 was
368 mA and 345 mA. (The Traction Control checkout data
were excluded when generating those statistics). Lower peak
and average drive currents with Traction Control enabled
are consistent with the development and V&V test results.
The reason there is more data to the right of Sol 1678 is
that Traction Control enabled drives take slightly longer to
complete than drives during which it is disabled.

One limitation of comparing drive currents from before and
after starting nominal use of Traction Control is the drives
are not over the exact same terrain. It could be that some
of the terrain is easier to traverse, for example, downhill vs.
uphill. To address this, a Traction Control disabled set of
sols (1664-1677) and Traction Control enabled set of sols
(1678-1707) were selected for analysis which were close in
proximity and had similar rover pitch and suspension angle
profiles. Figure 22 contains a plot of the rover elevation after
being corrected by Visual Odometry. There are 8 uphill drives
between Sols 1664 -1677 that have a similar elevation rate of
change as 17 drives between Sols 1678-1707.

Figures 23 and 24 contain rover pitch and rover suspension
angles for the two ranges of sols selected for analysis. The
average rover pitch is 0.7 degrees higher for the Traction
Control enabled data set. In the suspension angle plot, while
the average absolute value of the left bogie is 0.30 degrees
higher for the disabled data set, the average absolute value
of the right bogie and differential are 0.28 and 0.11 degrees
higher for the enabled data set. That these values are small is
an indication that the terrain difficulty for the two data sets is
similar.

Figure 25 contains a plot of the max rover slip for the drives in
the two data sets. The Sol 1703 drive faulted after 2.88 meters
progress when the rover experienced wheel slip of 61.2%,
exceeding the default 60% excessive slip limit. The front
hazard camera image in Figure 25 illustrates that Curiosity
was driving uphill through sandy terrain at a rover pitch of 9.5
degrees when the drive faulted. The average max rover slip
is 2.1% lower for the enabled data set. Since there were no
comparable excessive slip drives in the disabled data set, this
drive was removed from the Traction Control enabled data set
as an outlier when comparing drive currents between the two
data sets. In addition, the data for the Sol 1682 FMWI drive
was removed from the enabled data set, since the capability
is disabled for FMWI drives. The total odometry for the 8
drives in the disabled data set was 135.7 meters. The total
odometry for the 15 drives left in the enabled data set was
389.7 meters.

By default, drive telemetry is recorded at 8Hz for both
Traction Control disabled and enabled drives. For both the
disabled and enabled data sets, the raw non-startup drive
current for each wheel was averaged over each drive. Then
the average drive current for each wheel was averaged over all
the disabled and enabled drives. Figure 26 contains a graph
of the average of average drive current for each wheel for
both data sets. The average of average wheel current for all
wheels was lower for the enabled data set, most notably for
the LF and RR wheels. The LF, LM, LR, RF, RM, and RR
averages of average wheel current were 17.0%, 5.2%, 1.5%,
2.3%, 2.1%, and 12.9% lower for the enabled data set.

When Traction Control is enabled, it calculates a timeout
for each drive step. Exceeding the drive step timeout is the
only new fault type introduced by this capability. Of the 66
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nominal-use drives thus far, only one has ended early due to
a Traction Control timeout fault; the Sol 1786 drive faulted
after 15.86 meters of the planned 27.9 meters drive when a
32.77 second timeout was exceeded while the right rear wheel
was driving over a large rock. Incidentally, the right bogie
suspension angle was 0.3 degrees away from exceeding its 18
degree limit; the drive was seconds away from being stopped
with a suspension fault.

During development testing, a middle wheel wheelie behav-
ior was observed during high-friction terrain testing. To
prevent propagation of a middle or rear wheelie with Traction
Control enabled, a wheelie suppression behavior, which ad-
justs the speed of the other bogie wheel to lower the elevated
wheel, was added to the Traction Control software. The
detection of a wheelie event occurs when the suspension rate
and bogie angle exceed a threshold, and the motor current
magnitude is below a threshold. The amount a bogie wheel
is adjusted is proportional to the bogie angle and bogie angle
rate. These values are parameterized and set conservatively.
When driving over complex terrain with Traction Control
enabled, it is not unusual for the wheelie detector to be
triggered for short durations. The average distance between
wheelie detections that occurred in the Traction Control en-
abled Mars data set was 2.4 meters (with average duration
2.5 seconds), consistent with the 1.7 meter average distance
between wheelie detections observed during the Earth-based
testing on the complex terrain in Figure 14.

Two of the costs of Traction Control are larger motion history
data product size and longer traverse times. The compressed
motion history data product size per meter is shown in Fig-
ure 27 for all of the drives in the two data sets. Note that
there is usually at least a small portion of Traction Control
disabled motion history data products even on drives where
Traction Control was enabled. This is because turn-in-place
motions and commanded arcs of less than 10cm are not per-
formed using this algorithm. The compressed enabled motion
history data products were on average 1.91x larger than the
compressed disabled motion history data products. This is
lower than the worst case predict from VSTB measurements
on complex terrain (2.2x), higher than the best case predict
from the VSTB measurements on flat terrain (1.8x), and close
to what is currently modeled (1.9x).

For the two data sets, the time between the dispatch of first
motion command and completion of last motion command
for each drive was obtained from the drive telemetry. For each
drive, the total Visual Odometry corrected odometry divided
by this time was used to generate the drive traverse rates in
Figure28. For the two data sets, the Traction Control enabled
drives took on average 11.2% longer than the Traction Con-
trol disabled drives.

7. SUMMARY
The MSL rover has accumulated substantial damage on its
wheels over the 17.8 km traveled on Mars as of October 2017.
The MSL project concluded the cause of this damage to be
the large forces imparted on individual wheels while climbing
sharp, embedded rocks. The obvious remedy was a departure
from the previously used Ackermann steering model, which
assumes level terrain. This paper detailed the development
of new Traction Control software, a driving algorithm that
adapts the rotational speed of each wheel relative to its local
terrain. This strategy merges realtime data from the rocker-
bogie suspension system and IMU to estimate wheel contact

points with the terrain, and commands speeds based on the
climbing behavior of each individual wheel.

The algorithm was implemented as a hot patch to the current
testbed version of flight software, rather than being released
as a new version of flight software. This decision allowed for
a quicker delivery timeline, as the patch eventually uploaded
to Mars would be orders of magnitude smaller than a full
version of flight software and would also only require re-
gression testing of mobility and flight protection capabilities.
During V&V testing of the Traction Control algorithm, all
mobility commands executed nominally while running the
software patch. These comprehensive ground tests on the
flight-like rover testbed included testing on mixed terrain
types and various rock heights; the results presented here
demonstrate modest reductions in the wheel loading. The
average reduction in resultant loads on relatively benign ter-
rain was 19% for leading front wheels, while leading middle
wheels experienced an 11% reduction. Smaller yet similarly
consistent reductions in wheel loads and drive torques were
seen on more complex terrain. Development and V&V
testing also demonstrated the ancillary benefits of reduced
unintended yaw and rover slip.

The MSL project approved the Traction Control flight soft-
ware patch for nominal use in flight in April 2017. Curiosity’s
first drive using Traction Control successfully occurred on
Sol 1646. Initial performance results from flight data shows
that drives using the Traction Control software result in lower
peak and average drive actuator current. In comparing a
Traction Control enabled set of sols (1678-1707) with a
Traction Control disabled set of sols (1664-1677), the average
reduction in wheel currents was 10% for the front wheels and
7% for the rear wheels. While we cannot directly measure
wheel loads or wheel torques seen in flight, these findings
suggest that the wheels are successfully experiencing lower
forces acting on them. Additionally, the new algorithm
has resulted in a lower maximum rover slip (average 2.1%
lower) over these drives. Overall, the primary costs of the
Traction Control software (11.2% longer traverse time and
1.91x larger Mobility data products) as seen in flight are
outweighed by the benefit to MSL of reduced forces on the
wheels. It is difficult to project how much the reduction in
forces on the wheels will translate to additional months of
wheel life until there is more data to trend, but preliminary
flight validation of the Traction Control algorithm has shown
that it is performing as expected.

Future Work

The performance of the Traction Control software presented
here will continue to be evaluated on Mars. Additional tools
to aid in the trending of flight data and to determine the
efficacy of Traction Control are currently in development.
In addition, improvements to the Traction Control software
are currently being discussed. A version which incorporates
torque feedback into wheel speed commanding to better
achieve desired torque at each wheel as a function of contact
angle has been proposed. This modification is hypothesized
to further reduce the resultant contact force on each wheel, al-
though this potential improvement in performance has not yet
been quantified. This algorithm is currently in development,
and the discussion of its implementation is ongoing.

Future rover missions are also evaluating Traction Control
for possible use, largely in part for the potential reduced yaw
error and reduced slip benefits demonstrated here.
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APPENDIX
Table 2 below defines the key variables and parameters refer-
enced in this paper.

Table 2. Description of key symbols

Symbol Description
bRa rotation from frame a to frame b
a ~AB vector ~AB expressed in frame a
avA velocity of point A expressed in frame a (rela-

tive to inertial frame)
O rover origin point
D rocker pivot point
B1 left bogie pivot point
B2 right bogie pivot point
Ai center of wheel i
lfd length between front wheel and rocker in body

x-z plane
ldb length between rocker and bogie in body x-z

plane
lbm length between bogie and middle wheel in

body x-z plane
lbr length between bogie and rear wheel in body

x-z plane
κ1 angle between ~DA1 and body x axis on flat

ground
κ2 angle between body x axis and ~B1D on flat

ground
κ3 angle between ~B1A3 and body x axis on flat

ground
κ4 angle between body x axis and ~A5B1 on flat

ground
Rw wheel radius
xfm longitudinal distance between front and middle

wheels on flat ground
xmr longitudinal distance between middle and rear

wheels on flat ground
yof lateral distance between origin and front

wheels on flat ground
yom lateral distance between origin and middle

wheels on flat ground
yor lateral distance between origin and rear wheels

on flat ground
xod longitudinal distance between rover origin and

rocker on flat ground
zod signed vertical distance between rover origin

and rocker on flat ground
r turn radius (distance between rover origin and

center of rotation)
ẋ, ẏ, ż linear velocity of rover origin along x, y, z body

axes
φ rover roll angle
θ rover pitch angle
ψ rover yaw angle

ωx,y,z rover angular rates along body x, y, z axes
(relative to inertial frame)

β left rocker angle
ρ1 left bogie angle
ρ2 right bogie angle
ηi contact angle of wheel i
ψi steering angle of wheel i
θ̇i angular rate of wheel i
yζi angular rate of drive actuator for wheel i along

its y axis
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